15 research outputs found

    Interpretation of the prominence differential emissions measure for 3 geometries

    Get PDF
    Researchers have used prominence extreme ultraviolet line intensities observed from Skylab to derive the differential emission measure Q(T) in the prominence-corona (PC) interface from 3 x 10,000 to 3 times 1 million K, including the effects of Lyman Continuum absorption. Using lines both shortward and longward of the Lyman limit, researchers have estimated the importance of absorption as function of temperature. The magnitude of the absorption, as well as its rate of increase as a function of temperature, place limits on the thread scales and the character of the interfilar medium. Researchers have calculated models based on three assumed geometries: (1) threads with hot sheaths and cool cores; (2) isothermal threads; and (3) threads with longitudinal temperature gradients along the magnetic field. Comparison of the absorption computed from these models with the observed absorption in prominences shows that none of the geometries is totally satisfactory

    Small-scale structures and the density irregularity of the inner corona

    Get PDF
    The observational evidence is considered that the electron density irregularity factor is much greater than unity in the inner corona, in particular, evidence derived from the photometric comparison of the K-corona emission p Beta with the EUV emission from coronal ions. A simple mathematical model was developed for the irregularity having a minimum number of parameters. This model was used to explore some implications of the observations and to show that well-known resolved structures such as polar plumes and coronal loops as presently understood cannot alone explain the irregularity

    Coronal and chromospheric physics

    Get PDF
    Achievements and completed results are discussed for investigations covering solar activity during the solar maximum mission and the solar maximum year; other studies of solar activity and variability; infrared and submillimeter photometry; solar-related atomic physics; coronal and transition region studies; prominence research; chromospheric research in quiet and active regions; solar dynamics; eclipse studies; and polarimetry and magnetic field measurements. Contributions were also made in defining the photometric filterograph instrument for the solar optical telescope, designing the combined filter spectrograph, and in expressing the scientific aims and implementation of the solar corona diagnostic mission

    Coronal and chromospheric physics

    Get PDF
    The Solar Maximum Mission support program is mentioned along with investigations of the solar corona, prominences, and chromosphere. The solar limb was studied using far infrared and submillimeter photometry. Stokes profiles obtained from sunspot observations were examined with a polarimetric technique

    Submillimeter extensions of the solar limb determined from observations of the total eclipse of 1981 July 31

    Get PDF
    First results are presented of observations of a lunar occultation of the solar limb made from the Kuiper Airborne Observatory in the 30 micrometr, 50 micrometer, 100 micrometer, and 200 micrometer continuum during the total solar eclipse of 1981 July 31. The solar limb was extended at the longer wavelengths up to 1000 km higher than predicted from smooth plane-parallel chromospheric models. Results at both second and third contact show the infrared limb extensions to be approximately 0".8, 1"5, 2".5 and 3".0 above the visible limb in the observed bands, respectively. A possible interpretation proposes chromospheric fine structure inhomogeneities of greater density than presently incorporated in models of the middle chromosphere

    Extreme limb profiles of the sun at far-infrared and submillimeter wavelengths

    Get PDF
    Thirty, 50, 100, and 200 microns solar limb intensity profiles determined with arcsecond resolution from airborne observations of the occultation of the solar limb during the total eclipse of 1981 July 31 are presented. Two points of particular importance emerge: (1) the longer-wavelength (100 and 200 micron) limbs are significantly brighter than disk center. At 200 microns the extreme limb is about 1.22 times the brightness of disk center. This is consistent with the 6000 K temperature-plateau structure of the model chromospheres of Vernazza, Avrett, and Loeser (1973, Ap. J., 184, 605; 1981; Ap. J. Suppl., 45, 635;) and (2) the longer wavelength limbs are extended significantly further above the visible limb than Vernazza, Avrett, and Loeser predict. These results provide a strong basis for modeling of the solar chromosphere free from the assumption of gravitational-hydrostatic equilibrium

    On Solving the Coronal Heating Problem

    Full text link
    This article assesses the current state of understanding of coronal heating, outlines the key elements of a comprehensive strategy for solving the problem, and warns of obstacles that must be overcome along the way.Comment: Accepted by Solar Physics; Published by Solar Physic

    An Observational Overview of Solar Flares

    Full text link
    We present an overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era. Following an introductory discussion and overview of the status of observational capabilities, the article is split into topical sections which deal with different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections. We also discuss flare soft X-ray spectroscopy and the energetics of the process. The emphasis is to describe the observations from multiple points of view, while bearing in mind the models that link them to each other and to theory. The present theoretical and observational understanding of solar flares is far from complete, so we conclude with a brief discussion of models, and a list of missing but important observations.Comment: This is an article for a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011
    corecore